Extensions 1→N→G→Q→1 with N=C2xC10 and Q=C22

Direct product G=NxQ with N=C2xC10 and Q=C22
dρLabelID
C23xC1080C2^3xC1080,52

Semidirect products G=N:Q with N=C2xC10 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2xC10):C22 = D4xD5φ: C22/C1C22 ⊆ Aut C2xC10204+(C2xC10):C2^280,39
(C2xC10):2C22 = D4xC10φ: C22/C2C2 ⊆ Aut C2xC1040(C2xC10):2C2^280,46
(C2xC10):3C22 = C2xC5:D4φ: C22/C2C2 ⊆ Aut C2xC1040(C2xC10):3C2^280,44
(C2xC10):4C22 = C23xD5φ: C22/C2C2 ⊆ Aut C2xC1040(C2xC10):4C2^280,51

Non-split extensions G=N.Q with N=C2xC10 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2xC10).C22 = D4:2D5φ: C22/C1C22 ⊆ Aut C2xC10404-(C2xC10).C2^280,40
(C2xC10).2C22 = C5xC4oD4φ: C22/C2C2 ⊆ Aut C2xC10402(C2xC10).2C2^280,48
(C2xC10).3C22 = C4xDic5φ: C22/C2C2 ⊆ Aut C2xC1080(C2xC10).3C2^280,11
(C2xC10).4C22 = C10.D4φ: C22/C2C2 ⊆ Aut C2xC1080(C2xC10).4C2^280,12
(C2xC10).5C22 = C4:Dic5φ: C22/C2C2 ⊆ Aut C2xC1080(C2xC10).5C2^280,13
(C2xC10).6C22 = D10:C4φ: C22/C2C2 ⊆ Aut C2xC1040(C2xC10).6C2^280,14
(C2xC10).7C22 = C23.D5φ: C22/C2C2 ⊆ Aut C2xC1040(C2xC10).7C2^280,19
(C2xC10).8C22 = C2xDic10φ: C22/C2C2 ⊆ Aut C2xC1080(C2xC10).8C2^280,35
(C2xC10).9C22 = C2xC4xD5φ: C22/C2C2 ⊆ Aut C2xC1040(C2xC10).9C2^280,36
(C2xC10).10C22 = C2xD20φ: C22/C2C2 ⊆ Aut C2xC1040(C2xC10).10C2^280,37
(C2xC10).11C22 = C4oD20φ: C22/C2C2 ⊆ Aut C2xC10402(C2xC10).11C2^280,38
(C2xC10).12C22 = C22xDic5φ: C22/C2C2 ⊆ Aut C2xC1080(C2xC10).12C2^280,43
(C2xC10).13C22 = C5xC22:C4central extension (φ=1)40(C2xC10).13C2^280,21
(C2xC10).14C22 = C5xC4:C4central extension (φ=1)80(C2xC10).14C2^280,22
(C2xC10).15C22 = Q8xC10central extension (φ=1)80(C2xC10).15C2^280,47

׿
x
:
Z
F
o
wr
Q
<